SIEMENS

Table of Contents

(I = I Sl 1 TSN 0] 1. = SR
1.1, ETF File SIrUCIUIE.....ceeeeeeeee e
1.2. Keywords and ENtriesS. ...
1.3. ETF File CharacteriStiCS.......oovuu i
I Y T o A 1| (o

EasyCODE

1.5. File-Specific OptioNS........oooiiiiiie e
1.6. Line NUMDEIS.......oiiiiiiiii e

Import and Export of Structure Diagram Files in Standardized File Format
1.7. Character Set of ETF Files..........ccooviiiiiiiiccie e
1.8. INFO Strings for Import/EXport...........coooviiiiiiiiiiiiiieeeeeeeeeeeeeee
1.9. Constructs and Their ETF Format...........cccccvviieeiien

Techn. SW Documentation
1.9.5. CYCIE _ YD e
1.9.6. Dreak _tYP ..o
1.0.7. CASE YD i
1.9.8. casebranch _typ:.....cceiii i
1.9.9. ANA_ YD i
R TR O Ao T 1] o J U
1.0 11 MOt YD
1.9.12. DIOCK _tYP .
1.9.13. 1eVEl YD e
1.9.14. COMMENT YD .uei i
1.9.15. SWILCN_tYP .o
1.9.16. switchbranch_typ..........eeooiiiii e
SR TR I A (o T 1] T
1.9.18. repeal_tyP ..o
1.9.19. Call_tYP ..o
1.9.20. eXIt WP ceeiii i
1.9.21. detach _typ. oo
1.9.22. C_SWItCh YD eeeieeeie e
1.9.23. C_CASE YD i
1.9.24. default_typ. ...
1.9.25. retUIN_ YD e
1.9.26. cob_programm_typ.....ccoeuriii i
1.9.27. cOb_SECHON _tYP..uiiiiiiiiiii e
1.9.28. cob_paragraph_typ.....cceee oo
1.9.29. cob_inliNe_typ.....ccoieiiiiieee e
1.9.30. COb_timMeS_tYP..ceieieiiiieiii e
1.9.31. cob_varyingafter typ.....cccceeeeeiiiiiiii

EasyCODE Version 6.xE, 06-20-1996

© Copyright Siemens AG Osterreich (Siemens in Austria) PSE
1.9.32. cob_exXitper_tYP. ..o
1.9.33. cob_exittest typ...coooeeiiiiiiii

Table of Contents

1.9.34. cob_exitprog typ ..o

1.9.35. Cob_Call_typ oo

1.9.36. cob_excepltion_typP.. ...

1.9.37. cob_evaluate _typ.......ccovvmmiiiiiiiiiii e

1.9.38. cob_searCh_typ.....ccccuuiiiiiiiiiiiieeee e

1.9.39. Nty YD

1.9.40. PrOC YD

1.9.41. AUSWaN]_tYP .o

1.9.42. WiEder _tYP ..o

1.9.43. rahmeEN_tYP ..o

1.9.44. Class_tYP...uueeeiiiieiiieeie e

1.9.45. PUDIIC _tYP.ciiiii e

1.9.46. Private _tYP....cce e

1.9.47. protected _tyP .. e e

1,948, fUNC YD e

b2 1 4T o Yo o a1 U o1 1T o
2.1.Import ON File LEeVEL..........uuiiiiiiiiiiieeeeeeee et

2.2. Inserting Imported FileS........ccovveiiii i

p22C T U] oo Gl =1 1 (o] = TSN

2.4. Naming Conventions for ETF Files............oooiiiiiiii e

2.5. Checking of ETF Files During Import.............oooeie,

2.5.1. Origin of the ETF File......ccooiiiiiiiiiiieee e

2.5.2. Keyword ACCEPtanCe.ccouuvieeiiiiiiiiiiiieeeeeeeee e

2.5.3. Check of SemantiCs.........ccccouriiiiiiiiiiiieee e

G T {0 Yo o P
3.1 User Interface. ...

3.2. Check of Semantics During EXpOrt............oooiiiiiiiiiiiiiiii e,

TR T b oo o B =y (o] = T

4. Interface to Other Topics and Subsystems. ...
4.1, Program LiNKING........cii it e e e e e e e e eees

4.2, File Trans er. ..ot

4.3. Parser INterface........ccooo oo

4.4, INTO SEINGS...eeeieeeiiiiee s
ApPeNndix A - INFO SEINGS...uuuieiiii e
A1 INfO SNG LaYOUL.....oeiiieiiiiiieeeee e

A.2 Conventions & General Notes..........cooooiiiiiiiiiiieee e

A.2.1 Conventions Concerning Syntax Description..............cc.........

A.2.2 Notes on the Info String Syntax.........ccccccviiiiiiiiiiiiiiiii,

A.3 BS2000 COMMANG.......coiiiiiiiiiiaaaee e e ee et e e et e e e et e e eeeeans

A.4 BS2000 Statement........cooooiiiiii e

A Variant. ..o e

A.6 Procedure AtHDULES........oii e

AT CONAILIONS.....eiieeeeeeeeee e e e e e e e e e e e e e
ABVAriabIe. ... e

A.9 Conversion: Internal Structure <--> Info Strings...........coooovviiiiiiiinnee.

AL T IMPOIT. ..

F R T2 b o To] o S PP

S T | o =P

Technical Documentation Page 2

Table of Contents

1 ETF File Format
2 ETF File Structure

An ETF file consists of a sequence of entries, with each entry written in a separate line.

An entry consists of a keyword, one of the three separating symbols '=', "' or ;' and
(optional) text, which will in the following be referred to as the contents of the entry.

3 Keywords and Entries

Keywords consist of alphanumerical signs and underlines. Upper- and lowercases are
significant.

White spaces' before the entry are not significant and will be ignored during file import.
The only exception is the keyword EasyCODE, which must always be entered right at the
beginning of a file. The separating symbols must be entered immediately after the
keyword, without separating white spaces. The contents of the entry always begin with
the first character following the separating symbol and end at the end of the line.

The keywords

« Line

. Level

- EasyCODE
- Label

« and the keywords representing defined options,
are followed by a sign of equality and then text.

All keywords that are assigned to construct elements for which the structure diagram
may contain line numbers and, in the current case, actually contain line numbers other
than 0, are followed by a colon and the line number.

In all other cases, the keyword is terminated by a semi-colon.

During file import, semi-colons, colons and signs of equality will be accepted after all
keywords. The only exception is the Level keyword, which usually contains both a
LevellD and a line number. Here it is implicitly assumed that the line number will follow
immediately after the colon. All three characters must follow immediately after the
keyword (or LevellD or line number in the case of the Level keyword) (no white spaces in
between!).

Examples:

While keyword with line number=0:
While;

While keyword with line number=5:
While:5

Level keyword with line number=2, LevellD=3:
Level=3:2

Level keyword with line number=0, LevellD=3:

I Blanks, tabs, line breaks

Technical Documentation Page 3

Table of Contents

Level=3

Level keyword with line number=12, no LevellD (in EasyCODE(COL)):
Level:12

Level keyword with line number=0, no LevellD (in EasyCODE(COL)):

Level;

4 ETF File Characteristics

The first entry of an ETF file (keyword: EasyCODE) looks as follows:
EasyCODE={component} {version} {date/time of saving}

Example: EasyCODE=SPX V5.0 1993-11-11 11:11:11

The keyword EasyCODE is necessary for identifying the export format, while the
component name and the version will be analyzed during file import.

5 Short Info

Short infos are generated in a separate paragraph.
Shortinfo;
(Line={one Line entry per line})*
EndShortinfo;

The Shortinfo; and EndShortinfo; entries are required entries, the number of Line=
entries is optional.

6 File-Specific Options

Options are generated in the Options paragraph.
Options;
IflLayout={horizontal/vertical}
LevelNumbers={yes/no}
LineNumbers={yes/no}
ScreenFont={System,,100,1,-16,0,700,0,0,0,0,0,0,1,2,1,34}
PrinterFont={Courier,,120,3,-50,0,400,0,0,0,0,0,0,2,1,0,49}
LastLevelld={number}
EndOptions;

The Options; and EndOptions; entries are required entries. The sequence in which the
options are entered is, however, not relevant; incorrect or unclear entries will be skipped
during file import (warning in the ERR file). In case of double entries, it is always the last
one that will be analyzed.

7 Line Numbers

In version 5.0 and higher versions, line numbers will be stored in the ETF file, if they are
other than 0. The line number of a construct element will be recorded wiith the
corresponding keyword, after a colon. For details regarding the use of construct numbers
in case of export errors see chapter Export.

8 Character Set of ETF Files

Depending on the INI entry EtfFileFormat=ANSI or EtfFileFormat=0OEM, the ETF file will
be treated as ANSI or OEM coded. For all components, this entry will be stored in the
Settings section of the private INI file and cannot (yet) be modified with the help of the
user interface. Default setting is OEM.

In V4.0 and higher versions, the INI entry AnsiToOemConvert has been renamed
SourceFileFormat and may have the same values as EtfFileFormat. When the

Technical Documentation Page 4

Table of Contents

application is started, the old INI entry will be accepted; it will, however, be deleted and
replaced by the new entry when the option settings are saved.

9 INFO Strings for Import/Export

Some entries® (e.g. keywords: SdfCommand, Variant) have contents which will not be
analyzed or taken into account by the import/export interface. Instead, they will be
passed on as unchecked: strings from the ETF file to the application or vice versa,
depending on whether the file is imported or exported. The contents of these entries are
referred to as info strings.

Please note that info strings may - and in general do - comprise several lines. White
spaces within the string are significant and must not be modified by the import/export
interface.

If the INI entry EtfWrapSDF exists and is true (or yes or 1), the line breaks following the
info strings for SDF commands or SDF statements in an exported file will correspond to
those in the structure diagram of the application. If this is not the case, even the longest
SDF command will be generated in one line in the ETF file. Default setting is yes. This
entry cannot be modified with the help of the user interface, but should nevertheless be
documented for the user.

For details concerning the info strings (e.g. generation of info strings during export and
analysis of info strings during import) see Appendix A.

10 Constructs and Their ETF Format
11 General Notes

In the following sections, the ETF format for all construct types is specified. At the
beginning of each section, you will find a list of the components in which the construct is
available and the name of the construct as provided in the respective Insert menu, then
the construct itself (if several alternatives are possible, one of them has been selected at
random. This is possible because all constructs of one construct type have the same
structure.) and, to the right of the construct, the keywords of the ETF file. The dots ...
indicate a lower recursion level. Entries enclosed in simple brackets are optional.

12 dummy_typ

Available in: all components

Dummy;
13 if_typ:

Available in: EasyCODE(COB)...IF-THEN-ELSE
EasyCODE(C++)....if
EasyCODE(SP)......IF-THEN-ELSE
EasyCODE(SPX)....IF-THEN-ELSE

If;
(Label=)

Then;

Else;

2 All info strings that may occur are listed in the chapter Constructs and Their ETF Format.
3 When it comes to the import/export interface !

Technical Documentation Page 5

Table of Contents

Endlf;

During file import, empty ELSE branches will be added and, if this is the case, a warning
will be displayed. During file export, the complete construct will be generated.

14 while_typ

Available in: EasyCODE(COB)...PERFORM TEST BEFORE
EasyCODE(C++)....while
EasyCODE(SP)...... WHILE
EasyCODE(SPX)....WHILE

While/PerformTestBefore;
(Label=)

WhileBody/PerformTestBeforeBody;

End While/EndPerform TestBefore;

15 cycle_typ
Available in: EasyCODE(SP)...... LOOP
EasyCODE(SPX)....LOOP

Loop;
(Label=)

EndlLoop;

16 break_typ

Available in: EasyCODE(SP)......EXIT
EasyCODE(SPX)....EXIT

WhenExit;

EndWhenExit;
17 case_typ

Available in: EasyCODE(SP)...... SWITCH
EasyCODE(SPX)....SWITCH

OnCondition;
(Label=)

OnConditionRest;

EndOn Condlition;

If the otherwise branch does not exist, an empty otherwise branch will be added during
file import, and a warning will be displayed. During file export, the complete construct will
be generated.

Technical Documentation Page 6

Table of Contents

18 casebranch_typ:

Available in: EasyCODE(COB)...WHEN condition
EasyCODE(SP)...... WHEN
EasyCODE(SPX)....WHEN

OnConditionBranch;
(Label=)

5nConditionBranchBody;

EndOn ConditionBranch;
19 and_typ

Available in: EasyCODE(SP)...... AND
EasyCODE(SPX)....AND

And;

EndAnd:

20 or_typ

Available in: EasyCODE(SP)...... OR
EasyCODE(SPX)....OR

Or;

EndOr;

21 not_typ

Available in: EasyCODE(SP)...... NOT
EasyCODE(SPX)....NOT

Not;

EndNot:

22 block_typ

Available in: EasyCODE(C++)....Block
EasyCODE(SP)...... Block
EasyCODE(SPX)....Block

Block;
(Label=)

E/ockBody;

EndBlock:

Technical Documentation Page 7

Table of Contents

23 level_typ
Available in: all components....... Levelld

Level={dwLevelld}
(EntryName={one line of the entry name per line will be generated}) i

LevelBody;

E”ndLeveI;
The EntryName entry is used for COL only.

For details regarding the specification of line numbers and LevellDs for segments see
chapter 3

24 comment_typ

Available in: EasyCODE(COB)...Statement
EasyCODE(C++)....Statement
EasyCODE(DS)...... Data element
EasyCODE(SP)...... Statement
EasyCODE(SPX)....Statement

Text;
Offset={Offset of the Line entries}

(Line={one Line entry per line will be generated})*
EndText;

The Offset entry is used for COB only (required entry).
25 switch_typ

Available in: EasyCODE(SP)...... CASE
EasyCODE(SPX)....CASE

OnSelector;
(Label=)

5nSeIectorList;
OnSelectorRest;

EndOnSeIector;

If the otherwise branch does not exist, an empty otherwise branch will be added during
file import, and a warning will be displayed. During file export, the complete construct will
be generated.

Technical Documentation Page 8

Table of Contents

26 switchbranch_typ

Available in: EasyCODE(COB)...WHEN expression
EasyCODE(SP)...... OF
EasyCODE(SPX)....OF

OnSelectorBranch;
(Label=)
5nSelectorBranchBody;
EndOnSelectorBranch;
27 for_typ
Available in: EasyCODE(COB)...PERFORM TEST BEFORE VARYING
EasyCODE(C++)....for
EasyCODE(SP)...... FOR
EasyCODE(SPX)....FOR

For/PerformBeforeVarying;
ForBod y/PerformBeforeVaryingBody;

EndFor/EndPerformBefore Varying;
28 repeat_typ

Available in: EasyCODE(COB)...PERFORM TEST AFTER
EasyCODE(C++)....do while
EasyCODE(SP)...... REPEAT
EasyCODE(SPX)....REPEAT

Repeat/PerformTestAfter/DoWhile;
Until;
EndRepeat/EndPerform TestAfter/EndDoWhile;

In EasyCODE(COB), the first part of the tree (i.e. before the Until) contains the condition
and the second part contains the body. In all other components, it is the other way
round.

29 call_typ

Available in: EasyCODE(COB)...PERFORM Outline
EasyCODE(SP)...... Procedure call
EasyCODE(SPX)....Procedure call

Call/PerformQutline/InternalProcedureCall

EndCaIl/EndPen’ormOutline/EndInternaIProcedure Call

30 exit_typ

Available in: EasyCODE(COB)...EXIT
EasyCODE(C++)....break

Technical Documentation Page 9

Exit/Break;
31 detach_typ

Available in: EasyCODE(COB)..
EasyCODE(C++)...

Goback/Continue;

32 c_switch_typ

Available in: EasyCODE(C++)...

CSwitch;
ESWitchBody,'

EndCSwitch;
33 c_case_typ

Available in: EasyCODE(C++)...

CCaseBranch;
aCaseBranchBody,'

E“ndCCaseBranch,'
34 default_typ

Available in: EasyCODE(C++)...
EasyCODE(DS)....

Default/Alternative;

E“ndDefau/t/EndA/ternative;

35 return_typ

Available in: EasyCODE(C++)...

Return;

EndReturn;
36 cob_programm_typ

Available in: EasyCODE(COB)..

CobProgram;
ldDiv;

EnvDiv;
DataDiv;
ProcDivParam;

ErocDivBody;

Technical Documentation

.GOBACK
.continue

.switch

.case

.default

Alternative

.return

.Cobol program

Table of Contents

Page 10

Table of Contents

E“ndCobProgram,'

CobProgram and IdDiv must follow immediately one after the other. During file analysis,
ProcDivParam will be added, if required, and a warning will be displayed. During file
export, the complete construct will be generated.

When the contents of ProcDivParam are imported from an ETF file created by V4.0, the
USING keyword will be added. If this results in exceeding the maximum text length, the
warning "Parameters of PROCEDURE DIVSION or CALL are too long and were cut off."
will appear.

37 cob_section_typ
Available in: EasyCODE(COB)...SECTION

Section;
SectionBody;

EndSection;

38 cob_paragraph_typ
Available in: EasyCODE(COB)...PARAGRAPH

Paragraph;
ParagraphBody;

E“ndParagraph,'
39 cob_inline_typ
Available in: EasyCODE(COB)...PERFORM Inline

Performinline;

EndPerformlnline;
40 cob_times_typ
Available in: EasyCODE(COB)...PERFORM TIMES

PerformTimes;
PerformTimesBody;

EndPerformTimes;
41 cob_varyingafter_typ
Available in: EasyCODE(COB)...PERFORM After Varying

PerformAfterVarying;

Technical Documentation Page 11

.\;arying;
EndPen’ormA fterVarying;
42 cob_exitper_typ

Available in: EasyCODE(COB)..

ExitPerform;
43 cob_exittest_typ

Available in: EasyCODE(COB)..

ExitToTest;
44 cob_exitprog_typ

Available in: EasyCODE(COB)..

ExitProgram;

45 cob_call_typ

Available in: EasyCODE(COB)..

ExternalCall;
E“xternalCallParam,'

EndExternaICall;

.EXIT PERFORM

EXIT TO TEST

.EXIT PROGRAM

.CALL

Table of Contents

If ExternalCallParam does not exist, the branch will be added during file import, and a
warning will be displayed. During file export, the complete construct will be generated.

When the contents of ProcDivParam are imported from an ETF file created by V4.0, the
USING keyword will be added. If this results in exceeding the maximum text length, the
warning "Parameters of PROCEDURE DIVSION or CALL are too long and were cut off."

will appear.

46 cob_exception_typ

Available in: EasyCODE(COB)...Exception

Exception;
"dnException;
ExceptionBody;
NotExceptionBody;

E“ndException;

Technical Documentation

Page 12

47 cob_evaluate_typ

Available in: EasyCODE(COB)...EVALUATE

Evaluate;
EvaluateBody;
E valuateOther;

EndE valuate;

Table of Contents

If EvaluateOther does not exist during file import, the branch will be added, and a
warning will be displayed. During file export, the complete construct will be generated.

48 cob_search_typ

Available in: EasyCODE(COB)...SEARCH

Search;
AtEnd:
gearchBody;

EndSearch;
49 entry_typ

Available in: EasyCODE(COB)...ENTRY

Entry;
EntryUsing;

EndEntry:

If the EntryUsing entry does not exist, it will be added during file import, and a warning
will be displayed. During file export, the complete construct will always be generated.

50 proc_typ

Available in: EasyCODE(
EasyCODE(
EasyCODE(
EasyCODE(

Procedure/Object/Function;

ErocedureBody/ObjectBody/FunctionBody;

EndProcedure/EndObject/EndFunction;

Technical Documentation

C++)....Function
DS)
SP) Procedure

SPX)....Procedure

Page 13

Table of Contents

51 auswahl_typ
Available in: EasyCODE(DS)...... Selection

Choice;

EndChoice;
52 wieder_typ
Available in: EasyCODE(DS)...... Iteration, Option

Iteration;
IterationBody;
EndlterationBody;

Endlteration;
53 rahmen_typ

Available in: EasyCODE(SP)...... Frame
EasyCODE(SPX)....Frame

Frame;
FrameBody;
EndFrameBody;

EndFrame;
54 class_typ
Available in: EasyCODE(C++)....Class

Class;
ElassBody;
EndCIassBody;

EndClass;
55 public_typ
Available in: EasyCODE(C++)....public

Public;
56 private_typ
Available in: EasyCODE(C++)....private

Private;

Technical Documentation Page 14

Table of Contents

57 protected_typ
Available in: EasyCODE(C++)....protected

Protected;

58 func_typ

Available in: EasyCODE(SP)...... Function
EasyCODE(SPX)....Function

This construct is available only in V5.0 and higher versions.

Function;
FunctionBody;

EndFunction;

Technical Documentation Page 15

Table of Contents

59Import Function
60 Import on File Level

To import a file, choose Open... in the File menu. Before opening a file, EasyCODE
checks first whether the file has an internal format (ECB, DS or SP file), then whether it is
an ETF file (the export format is identified by the first entry - keyword: EasyCODE), and,
last, whether it is a source file (C, COB source, DS source and SPX source with available
parser).

Network behavior and naming are analogous to the parser (e.g. COB). Before a file is
imported, the following message will appear: "File %s will be converted from ETF into
EasyCODE(XXX) format". This message will be suppressed when you add the
SuppressETFConvMsg=true entry to the INI file. In the filter box, the "Export files
(*.ETF)" entry will be added before "All files (*.*)".

File import is possible only when the import DLL EASY-IMP.DLL is stored in the
EasyCODE installation directory, otherwise the following error message will appear:
"Dynamic Link Library %s not found or invalid!".

61 Inserting Imported Files

If an imported file is inserted into another file, the identification procedure is analogous to
the opening of an imported file. EasyCODE will check whether the file has an internal
format, export format (identified by the keyword EasyCODE) or source format (C, COB if
you use the new parser, DS, SPX if you use the available parser). Information
representing options and short info must, however, not be evaluated. The filters in the
"Insert" dialog window are analogous to those in the "Open " dialog window.

62 Import Errors

In case of errors other than general problems such as lack of memory on the hard disk or
other disk drives, which may occur anywhere and anytime, an ERR file is created which
contains one or several warnings and/or error messages. Every message is structured as

follows:
Line <number>: <error/warning>: <message text>

Errors:
« Import not allowed. Violation according to chapter: 65 Origin of the ETF File.
« Keyword %s expected. Violation according to chapter: 67 Check of Semantics.

« Keyword incorrect. The specified line contains some characters or words which
cannot be interpreted as a keyword.

« Entry exceeds maximum length. The entry exceeds MAX_TEXT_SIZE-.

« Keyword %s will not be imported by EasyCODE(%s). Violation according to chapter:
66 Keyword Acceptance.

« Unexpected keyword %s. Violation according to chapter: 67 Check of Semantics.
« Unexpected end of file. Violation according to chapter: 67 Check of Semantics.

Warnings:

4 This value is predefined by the parser interface (in parse.h). Currently, the maximum length is
about 30000.

Technical Documentation Page 16

Table of Contents

« Entry concerning keyword %s is not empty.
« Parameters of PROCEDURE DIVSION or CALL are too long and were cut off.:

For more detailled information please refer to the section on info strings in Appendix A

63 Naming Conventions for ETF Files

Since in case of import errors an ERR file will be created, the filename extension ERR is
not allowed for ETF files which are imported or exported. This naming conventions are
extended to all EasyCODE files, because when a file is opened, EasyCODE does not yet
know whether the file will be imported or not.

64 Checking of ETF Files During Import

During file import, the following independent checks will be made.
65 Origin of the ETF File

Before a file is imported, the origin of the ETF file will be checked on the basis of the first
entry, the EasyCODE keyword.

« All components can import their own 'exports'.
« SP/SPX can import files exported by all SE components except DS.

If none of these two statements can be applied, file import will not be started, and an
error message will be displayed. (For details see chapter 62) If a user wants to avoid
these requirements and modifies the first line in order to simulate that the ETF file has
been created by a different component, the user him-/herself will be responsible for all
undesirable consequences that may occur.

When SP/SPX files are imported into language components, no semantic conversion will
occur. For this operation, the existing internal interface for transferring SP/SPX files will
be useful.

66 Keyword Acceptance

When ETF files are imported, no matter where they come from, EasyCODE will check
the keywords on the basis of control tables to make sure that only those keywords of the
ETF file will be accepted which are available in the importing component. All other
keywords will be rejected. For details see chapter 62

67 Check of Semantics

Although there is no thorough analysis or check of structure during file import, the
constructs are checked for completeness and correctness in order to avoid extreme
deviations. Excluded from this rule are those constructs which were made up from
several internal structures: In particular, this relates to all derivatives of SWITCH and
SWITCH-SELECTOR constructs. An IF-THEN as a branch of a SWITCH will, for
example, not be rejected during file import. For details see chapter 62

> May occur only if V4.0 ETF files are imported.

Technical Documentation Page 17

Table of Contents

68Export

69 User Interface

To export a file, choose the menu item FEXPAS: "Export as..." in the File menu. The
export directory and the default extension (* ETF) are managed analogously to the
Generate as path/extensions (INI file, Save settings...). The "Export as..." dialog window
does not contain the incl. Save option or the Short info edit control.

The export function is not available in the DEMO version. If you try to export a file, the
following error message will be displayed: "The demo version cannot export".

70 Check of Semantics During Export

Since in various EasyCODE components the same constructs are (internally) used with
different keywords, it is sometimes not advisable to create a definite identifier for a
construct during file generation. The internal case construct, for example, is used as a
SWITCH in SPX and SP, but as a CASE in COL and JET, and the internal cycle
construct is used as a LOOP in SP and SPX, but as a CYCLE in COL and JET. In order
not to confuse the user, while at the same time maintaining the interchangeability
between the individual components, component-specific identifiers are generated for
such constructs which will, however, lead back to the same construct when the file is
imported. The alias identifiers may be exchanged regardless of the component. One of
these identifiers must always be the default value, so that components which do not
provide this construct at all, but are able to import it (in Russian, Turkish or Greek)or load
it somehow, will also be able to export it. The default identifier is underlined in chapter 710
Constructs and Their ETF Format.

71 Export Errors

In addition to general problems such as lack of memory on the hard disk or other disk
drives, which may occur anywhere and anytime, there are also export error messages
which may occur in EasyCODE(JET) and EasyCODE(PET) only. These errors may occur
because all info strings are checked before they are written into the ETF file. (For details
see the chapter on info strings.)

In case of errors, the procedure is the same as during file generation in EasyCODE(JET)
and EasyCODE(PET). The following message window

= EasyCASE[JET)

9 Fehler beim Export von TEST.ETF. Soll die

Fehlerdatei TEST.ERR angezeigt werden?

I | Nein

or the message

6 ETF: Abbreviation of EasyCODE Text Format.

Technical Documentation Page 18

Table of Contents

= EasyCASE[JET)

Fehler beim Export von TEST.ETF.
® Ausgabe der Fehlerdatei TEST.ERR derzeit

nicht miglich, da ein Programm ausgefiihrt
wird, das eine Ergebnisdatei erzeugt.

will appear, if the error file cannot be displayed because it is at the same time used by
another program. The only error which may occur in V5.0 is the following: SDF
command/statement cannot be re-imported because of structural errors/syntax errors.

Every error file has the filename extension ERR. Since the file is not automatically saved
before it is exported, there may be constructs which have not been assigned construct
numbers. When the errors are displayed, the construct numbers will be preceded by the
prefix # (as in EasyCODE(JET), EasyCODE(PET)). In the structure diagram, the display
of construct numbers is automatically switched on in case of errors.

Technical Documentation Page 19

Table of Contents

72Interface to Other Topics and Subsystems
73 Program Linking

In the Program settings dialog window, the Export before Program Call check box is
available in addition to the Generate before Program Call" option. If both boxes are
checked, the file will first be generated and/or saved and then exported before the
program call.

In the Program settings dialog window you may, in addition to the existing symbols, also
enter %EXPDIR%, %EXPDRIVEY%, %EXPEXT%, %EXPFILE%, %EXPNAME%,
%EXPPATHY into the individual editing boxes.

The user will be asked to specify the name of the export file only if the name has not yet
been assigned (analogous to file generation).

74 File Transfer

If an export filename exists, the export file will also be included into the default transfer
list (analogous to file generation).

75 Parser Interface

Since file import is based on the parser interface, all modifications concerning the parser
interface may affect the import interface specified in this document.

76 Info Strings

For effects on the import/export interface see the chapter concerning info strings above.

7In COL and C/C++: save.

Technical Documentation Page 20

Table of Contents

Appendix A - Info Strings

Special problems concerning the import/export interface may be caused by JET-specific
structures which are not displayed in the tree structure of the structure diagram, including

BS2000 commands
BS2000 statements
Variants

Procedure attributes

conditions

o a0 bk~ 0w N~

Variables

A.1 Info String Layout

The conversion of the internal representation to the info string corresponding to the JET
structure concerned must be bijective and must not affect in any way the values of both
forms of representation.

A.2 Conventions & General Notes
A.2.1 Conventions Concerning Syntax Description
« Normal characters (without italics or boldface) indicate fixed text.

+ Symbolic names, and nothing else, are written in italics and enclosed between
<and >.

« Alternatives are enclosed between { and } and separated by "|".
« The meta-symbols {} | are written in bold characters.
A.2.2 Notes on the Info String Syntax

It is absolutely necessary to adhere to the sequence of entries, the line breaks and the
syntax (therefore the info strings must be complete !), otherwise they will be rejected
when the file is analyzed (during file import).

According to the syntax, the end of an editable section (represented by a symbolic
name) must always be at the end of a line and is followed only by the line break (or even
by the end of file). Thus, these sections are not subject to contents restrictions, because
no special symbol or internal structure is required for identifying their ends. This is of vital
importance because although the editable sections may contain any text, EasyCODE
must be able to import every exported ETF file without any modifications.

Info string entries should, if possible, contain self-explanatory names which follow more
or less the SDF (BS2000) terminology and are therefore quite long, which on the one
hand makes the ETF file easier to read and understand, but on the other hand may
considerably reduce the performance during file import and export. These two factors are
to be weighed against each other.

The ETF interface should be a bit more restrictive than the internal format interface,
which on the whole does nothing else but write the internal tree into a file when a
structure diagram is saved and retrieve it without checking when the file is opened. Since
the ETF interface will also allow manual modification, a certain amount of internal
consistency should be guaranteed. This is why the structure of the info strings in some
ways differs slightly from the structure of the internal EasyCODE files (*.JET, *.ECB,...).
Example: POS and LEN data for JV/variable comparisons should only be exported (and

Technical Documentation Page 21

Table of Contents

imported) if they are really required. Self-explanatory names (see above) for types and
various fields.

A.3 BS2000 Command
|node_typ: aktion_typ; akt typ: bs2_typ; bs2struct typ: bs2_cmd
-> Diplomarbeit (Roland)

A.4 BS2000 Statement
|node_typ: aktion_typ; akt _typ: bs2 _typ; bs2struct typ: bs2 statement
-> Diplomarbeit (Roland)

A.5 Variant
|node_typ: aktion_typ; akt_typ: variante_typ
NAME=<variant name>
VALUE=<variant value>

A.6 Procedure Attributes
|node_typ: Jjetproc _typ. Inhalt des Felds: attribute of jetproc struc

PROCEDURE-TYPE={BATCH|DIALOG}
JOBNAME=<jobname>

USERID=<userid>

JOBACCOUNT=<jobaccount>
PASSWORD=<password>
JOB-CLASS=<job-class>

JOB-PRIO=<job-prio>

RUN-PRIO=<run-prio>

TIME=<time>

PARAMETERS=<parameters>
SYSTEM-OUTPUT={PRINT|DELETE|TAPE-OUTPUT}
LOGGING=<character>
INTERRUPTION-ALLOWED={YES|NO}
ESCAPECHAR={&|@|#|*|%}
GENSTATUSJV={YES|NO}
RESTARTLOGIC={GEN|NOTGEN|NOTALLOWED}

A.7 Conditions
|node_typ: cond_typ
{
COND-TYPE=EMPTY

I

COND-TYPE=FILE

NAME=<filename>
STATE={CAT|NOTCAT|EMPTY|NOTEMPTY}

I

COND-TYPE=JV

LINK={YES|NO}

NAME=<jv-name or jv-link-name (depending on LINK=)>
STATE={CAT|NOTCAT|EMPTY|NOTEMPTY}

I

COND-TYPE=JVVARCOMP

Technical Documentation Page 22

Table of Contents

OPERAND1={JV|JV-LINK|VAR}

<description of first operand (see description of second operand)>
OPERATOR={=|<>|<|>|<=|>=}
OPERAND2={JV|JV-LINK|CSTRING|XSTRING}

<description of second operand:

For OPERAND1 and OPERAND?2 the following applies:

If: OPERANDx=JV or JV-LINK
LINK={YES|NO}
NAME=<jv-name or jv-link-name (depending on operand type)>
POS=<pos-value>
LEN=</en-value>
Falls OPERANDx=VAR
NAME=<var-name>

Falls OPERANDx=CSTRING
STRING=<c-string>
Falls OPERANDx=XSTRING
STRING=<x-string>
>

I

COND-TYPE=DATAPOOL

CALLID=<Call ID>

SELECTION-TYPE={NONE|FILENAME|FILELEN|VSN}
SELECTION=<filename/filelength/VSN (for SELECTION-TYPE=NONE:
empty/without any significance>

DATA={AVAILABLE|NOTAVAILABLE}

I
COND-TYPE=JOBSWITCH
0={ON|OFF|-}

31={ON|OFF|-}

I
COND-TYPE=USERSWITCH
0={ON|OFF|-}

31={ON|OFF|-}
USERID=<User ID>

}

A.8 Variable
|node_typ: variable_typ. Field contents: std of variable _struc
NAME=<variable name>
VALUE=<variable value>
POSVAR={YES|NO}

Technical Documentation Page 23

Table of Contents

A.9 Conversion: Internal Structure <--> Info Strings
A.9.1 Import

During file import, the JET structure corresponding to the info string delivered at the
import interface is reconstructed and written to the TMP file. In case of errors, the
following messages are written to the error file:

1. In case of incorrect SDF commands or SDF statements: SDF command/statement is
incorrect.

2. In all other cases: JET structure is incorrect.

For a more detailled description of import errors and how to proceed, see chapter 3.3
"Import Errors".

A.9.2 Export

All JET structures must be checked for correctness before a file can be exported. If an
error is identified, the error messages mentioned in chapter 4.3 will be displayed.
Otherwise, the JET structure will be converted into an info string, which will be written
into the ETF file via export interface.

Technical Documentation Page 24

ETF-Dateiformat Index

77Index

And; 8
and_typ 8
ANSI 5
AnsiToOemConvert 5
AtEnd; 14
auswahl typ 15
Block; 8
BlockBody; 8
Break; 10
break typ 7
¢ _case typ 11
¢ _switch_typ 11
CALL 13
Call; 10
call typ 10
CASE 9; 11
case_typ 7
casebranch_typ 8
Character set of ETF files 5
Choice; 15
Class 15
Class; 15
class_typ 15
ClassBody; 15
cob_call typ 13
cob_evaluate typ 14
cob_exception_typ 13
cob_exitper_typ 13
cob_exitprog typ 13
cob_exittest typ 13
cob_inline typ 12
cob_paragraph_typ 12
cob_programm_typ 11
cob_search typ 14
cob_section_typ 12
cob_times_typ 12
cob_varyingafter typ 12
Cobol program 11
CobProgram; 11
comment _typ 9
CSwitch; 11
CSwitchBody; 11
cycle typ 7
Data element 9
DataDiv; 11
default 11
default typ 11
detach_typ 11
Dummy; 6
dummy_typ 6
dwLevelld 9
EasyCODE= 4;5

Technical Documentation Page 26

ETF-Dateiformat

Else;

EndAnd;

EndBlock;

EndCall;

EndChoice;

EndClass;

EndClassBody;

EndCobProgram;

EndCSwitch;

EndEntry;

EndEvaluate;

EndException;

EndExternalCall;

EndFor

EndFrame;

EndFrameBody;

EndFunction;

EndIf;

EndlInternalProcedureCall;

Endlteration;

EndlterationBody;

EndLevel,

EndLoop;

EndNot;

EndObject;

EndOnCondition;

EndOnConditionBranch;

EndOnSelector;

EndOnSelectorBranch;

EndOptions;

EndOr;

EndParagraph;

EndPerformAfterVarying;

EndPerformBeforeVarying;

EndPerformlInline;

EndPerformOutline;

EndPerformTestAfter/EndDoWhile;

EndPerformTestBefore;

EndPerformTimes;

EndProcedure;

EndRepeat

EndReturn;

EndSearch;

EndSection;

EndShortInfo;

EndText;

EndWhenExit;

EndWhile;

Entry

Entry;

entry_typ

EntryUsing;

EnvDiv;

ERR file

ETF file format
constructs

Technical Documentation

14;

16

Index

Page 27

ETF-Dateiformat

specifications
structure
EtfFileFormat
EtfWrapSDF
Evaluate;
EvaluateBody;
EvaluateOther;
Exception
Exception;
ExceptionBody;
EXIT
Exit;
exit_typ
ExitPerform;
ExitProgram,;
ExitToTest;
Export errors
ExternalCall;
ExternalCallParam,;
File transfer
File-specific options
For;
for typ
ForBody;
Frame
Frame;
FrameBody;
func_typ
Function
Function;
FunctionBody;
Goback;
If;
if typ
IfLayout=
IF-THEN-ELSE
Import
insert file
open
Import errors
Import warnings
Info string
info strings

InternalProcedureCall;

Iteration
Iteration;
IterationBody;
Keyword
Label=
LastLevelld=
1dDiv;

Level

Level=

level typ
LevelBody;
LevellD

Technical Documentation

(@) WV, N SN

14
14
13
13
13

10
10
13
13
13
19
13
13
21

10
10
10
15
15
15
16
16
14; 16
14; 16
11

AN L &N

Index

Page 28

ETF-Dateiformat

LevelNumbers=

Line number

Line numbers

Line=

LineNumbers=

Loop;

Not;

not_typ
NotExceptionBody;
Object

Object;

ObjectBody;

OEM

OF

Offset=
OnConditionBranch;
OnConditionBranchBody;
OnException;
OnSelector;
OnSelectorBranch;
OnSelectorBranchBody;
OnSelectorList;
OnSelectorRest;
Option

Options;

Or;

or_typ

Paragraph;
ParagraphBody;

Parser interface
PERFORM Outline
PerformAfterVarying;
PerformBeforeVarying;
PerformBeforeVaryingBody;
PerformlInline;
PerformOutline;
PerformTestAfter/DoWhile;
PerformTestBefore
PerformTestBeforeBody
PerformTimes;
PerformTimesBody;
PrinterFont=

Private;

private_typ

proc_typ
ProcDivBody;
ProcDivParam;
Procedure

Procedure;
ProcedureBody;
Program linking
Program settings
Protected;

protected typ

Public;

public_typ

Technical Documentation

00 WnN Kb~ W

Index

Page 29

ETF-Dateiformat

rahmen_typ
Repeat;
repeat_typ
Return;
return_typ
ScreenFont=
Search;
SearchBody;
Section;
SectionBody;
Selection

Short info
ShortInfo;
SourceFileFormat
Statement
SWITCH
switch_typ
switchbranch_typ
Text;

Then,;

Until,

Varying;

WHEN condition
WHEN expression
WhenEXit;
While;

while_typ
WhileBody;
wieder typ

Technical Documentation

Index

Page 30

	1 ETF File Format
	2 ETF File Structure
	3 Keywords and Entries
	4 ETF File Characteristics
	5 Short Info
	6 File-Specific Options
	7 Line Numbers
	8 Character Set of ETF Files
	9 INFO Strings for Import/Export
	10 Constructs and Their ETF Format
	11 General Notes
	12 dummy_typ
	13 if_typ:
	14 while_typ
	15 cycle_typ
	16 break_typ
	17 case_typ
	18 casebranch_typ:
	19 and_typ
	20 or_typ
	21 not_typ
	22 block_typ
	23 level_typ
	24 comment_typ
	25 switch_typ
	26 switchbranch_typ
	27 for_typ
	28 repeat_typ
	29 call_typ
	30 exit_typ
	31 detach_typ
	32 c_switch_typ
	33 c_case_typ
	34 default_typ
	35 return_typ
	36 cob_programm_typ
	37 cob_section_typ
	38 cob_paragraph_typ
	39 cob_inline_typ
	40 cob_times_typ
	41 cob_varyingafter_typ
	42 cob_exitper_typ
	43 cob_exittest_typ
	44 cob_exitprog_typ
	45 cob_call_typ
	46 cob_exception_typ
	47 cob_evaluate_typ
	48 cob_search_typ
	49 entry_typ
	50 proc_typ
	51 auswahl_typ
	52 wieder_typ
	53 rahmen_typ
	54 class_typ
	55 public_typ
	56 private_typ
	57 protected_typ
	58 func_typ

	59 Import Function
	60 Import on File Level
	61 Inserting Imported Files
	62 Import Errors
	63 Naming Conventions for ETF Files
	64 Checking of ETF Files During Import
	65 Origin of the ETF File
	66 Keyword Acceptance
	67 Check of Semantics

	68 Export
	69 User Interface
	70 Check of Semantics During Export
	71 Export Errors

	72 Interface to Other Topics and Subsystems
	73 Program Linking
	74 File Transfer
	75 Parser Interface
	76 Info Strings

	Appendix A - Info Strings
	A.1 Info String Layout
	A.2 Conventions & General Notes
	A.2.1 Conventions Concerning Syntax Description
	A.2.2 Notes on the Info String Syntax

	A.3 BS2000 Command
	A.4 BS2000 Statement
	A.5 Variant
	A.6 Procedure Attributes
	A.7 Conditions
	A.8 Variable
	A.9 Conversion: Internal Structure <--> Info Strings
	A.9.1 Import
	A.9.2 Export

	77 Index

